Training MILBoost classifier for MUSK1 dataset


In [13]:
from skboost.milboost import MILBoostClassifier
from skboost.datasets import MUSK1, MUSK2
from skboost.softmax import *

In [14]:
ds1 = MUSK1()
print(ds1)


MUSK "Clean1" database - 476 instances with 166 features. 47 Musks, 45 Non-musks

Train with NoisyOR softmax function


In [15]:
c_nor = MILBoostClassifier(softmax=NoisyOR())

In [16]:
c_nor.fit(ds1.data, ds1.labels)


---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-16-c731eba85257> in <module>()
----> 1 c_nor.fit(ds1.data, ds1.labels)

/home/hbldh/Repos/NMM/MILBoost/milboost/classifier.py in fit(self, X, y, sample_weight)
     82         self._bag_labels[np.abs(unique_bag_ids)] = np.sign(unique_bag_ids)
     83         self._inferred_y = np.sign(y)
---> 84         self._positives = self._inferred_y > 0
     85 
     86         # Fit

/home/hbldh/VEnvs/nmm/local/lib/python2.7/site-packages/sklearn/ensemble/weight_boosting.pyc in fit(self, X, y, sample_weight)
    139                 iboost,
    140                 X, y,
--> 141                 sample_weight)
    142 
    143             # Early termination

/home/hbldh/Repos/NMM/MILBoost/milboost/classifier.py in _boost(self, iboost, X, y, sample_weight)
    105         y_predict = estimator.predict(X)
    106 
--> 107         if iboost == 0:
    108             self.classes_ = getattr(estimator, 'classes_', None)
    109             self.n_classes_ = len(self.classes_)

/home/hbldh/Repos/NMM/MILBoost/milboost/classifier.py in decision_function(self, X)
    158         classes = self.classes_[:, np.newaxis]
    159 
--> 160         if len(self.estimators_) == 0:
    161             return np.zeros(((X.shape[0]),), 'float')
    162 

IndexError: invalid index to scalar variable.

In [ ]: